Multifunctional and specialized spinal interneurons for turtle limb movements.

نویسنده

  • Ari Berkowitz
چکیده

The turtle spinal cord can help reveal how vertebrate central nervous system (CNS) circuits select and generate an appropriate limb movement in each circumstance. Both multifunctional and specialized spinal interneurons contribute to the motor patterns for the three forms of scratching, forward swimming, and flexion reflex. Multifunctional interneurons, activated during all of these motor patterns, can have axon terminal arborizations in the ventral horn, where they likely contribute to limb motor output. Specialized interneurons can be specialized for a behavior, as opposed to a phase or motor synergy. Interneurons specialized for scratching can be hyperpolarized throughout swimming. Interneurons specialized for flexion reflex can be hyperpolarized throughout scratching and swimming. Some structure-function correlations have been revealed: flexion reflex-selective interneurons had somata exclusively in the dorsal horn, in contrast to scratch-activated interneurons. Transverse interneurons, defined by quantitative morphological criteria, had higher peak firing rates, narrower action potentials, briefer afterhyperpolarizations, and larger membrane potential oscillations than scratch-activated interneurons with different dendritic morphologies. Future investigations will focus on how multifunctional and specialized spinal interneurons interact to generate each motor output.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles for Multifunctional and Specialized Spinal Interneurons During Motor Pattern Generation in Tadpoles, Zebrafish Larvae, and Turtles

The hindbrain and spinal cord can produce multiple forms of locomotion, escape, and withdrawal behaviors and (in limbed vertebrates) site-specific scratching. Until recently, the prevailing view was that the same classes of central nervous system neurons generate multiple kinds of movements, either through reconfiguration of a single, shared network or through an increase in the number of neuro...

متن کامل

Dendritic orientation and branching distinguish a class of multifunctional turtle spinal interneurons

Spinal interneurons can integrate diverse propriospinal and supraspinal inputs that trigger or modulate locomotion and other limb movements. These synaptic inputs can occur on distal dendrites and yet must remain effective at the soma. Active dendritic conductances may amplify distal dendritic inputs, but appear to play a minimal role during scratching, at least. Another possibility is that spi...

متن کامل

Physiology and morphology indicate that individual spinal interneurons contribute to diverse limb movements.

Overlapping neuronal networks have been shown to generate a variety of behaviors or motor patterns in invertebrates, but the evidence for this is more circumstantial in vertebrates. The turtle spinal cord can produce multiple forms of hindlimb scratching movements as well as hindlimb withdrawal, but it is still uncertain whether individual spinal cord interneurons contribute to the motor output...

متن کامل

Spinal interneurons that are selectively activated during fictive flexion reflex.

Behavioral choices in invertebrates are mediated by a combination of shared and specialized circuitry, including neurons that are inhibited during competing behaviors. Less is known, however, about the neural mechanisms of behavioral choice in vertebrates. The spinal cord can appropriately select among several types of limb movements, including limb withdrawal (flexion reflex), scratching, and ...

متن کامل

Somato-dendritic morphology predicts physiology for neurons that contribute to several kinds of limb movements.

It has been difficult to predict the behavioral roles of vertebrate CNS neurons based solely on their morphologies, especially for the neurons that control limb movements in adults. We examined the morphologies of spinal interneurons involved in limb movement control, using intracellular recording followed by Neurobiotin injection in the in vivo adult turtle spinal cord preparation. We report h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 1198  شماره 

صفحات  -

تاریخ انتشار 2010